Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.408
1.
Sci Rep ; 14(1): 10601, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719921

A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe. Several hints point to the hypothesis that G. minor is transported to the deep ocean attached to particles, and the absence of G. minor in bathypelagic Atlantic waters could then be explained by the absence of this organism in surface waters of the equatorial Atlantic. The good correlation of G. minor biomass with Apparent Oxygen Utilization, recalcitrant carbon and free-living prokaryotic biomass in South Pacific waters, together with the identification of the observed cells as yeasts and not as resting spores (teliospores), point to the possibility that once arrived at deep layers this species keeps on growing and thriving.


Basidiomycota , Pacific Ocean , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , RNA, Ribosomal, 18S/genetics , Seawater/microbiology , Phylogeny , Atlantic Ocean , DNA, Ribosomal/genetics , DNA, Fungal/genetics
2.
Arch Microbiol ; 206(5): 241, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698267

The epidemic of stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), would reduce wheat (Triticum aestivum) yields seriously. Traditional experimental methods are difficult to discover the interaction between wheat and Pst. Multi-omics data analysis provides a new idea for efficiently mining the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for differentially expressed genes (DEGs) between low susceptibility and high susceptibility samples, and carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-expression network, identified the core genes and interacted gene pairs from the conservative modules. Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-expression network and drew the wheat NLR gene co-expression network. In order to provide accessible information for related researchers, we built a web-based visualization platform to display the data. Based on the analysis, we found that resistance-related genes such as TaPR1, TaWRKY18 and HSP70 were highly expressed in the network. They were likely to be involved in the biological processes of Pst infecting wheat. This study can assist scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst interaction patterns.


Gene Regulatory Networks , Host-Pathogen Interactions , Plant Diseases , Puccinia , Triticum , Triticum/microbiology , Plant Diseases/microbiology , Puccinia/genetics , Disease Resistance/genetics , Gene Ontology , Gene Expression Regulation, Plant , NLR Proteins/genetics , NLR Proteins/metabolism , Basidiomycota/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
3.
Environ Microbiol Rep ; 16(3): e13213, 2024 Jun.
Article En | MEDLINE | ID: mdl-38738810

Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.


Asclepias , Fungi , Herbivory , Plant Leaves , Animals , Plant Leaves/microbiology , Asclepias/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/physiology , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Mycobiome , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/physiology , Basidiomycota/isolation & purification , Gastrointestinal Microbiome , Larva/microbiology , Moths/microbiology
4.
Sci Rep ; 14(1): 10938, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740878

Plant disease often increases with N, decreases with CO2, and increases as biodiversity is lost (i.e., the dilution effect). Additionally, all these factors can indirectly alter disease by changing host biomass and hence density-dependent disease transmission. Yet over long periods of time as communities undergo compositional changes, these biomass-mediated pathways might fade, intensify, or even reverse in direction. Using a field experiment that has manipulated N, CO2, and species richness for over 20 years, we compared severity of a specialist rust fungus (Puccinia andropogonis) on its grass host (Andropogon gerardii) shortly after the experiment began (1999) and twenty years later (2019). Between these two sampling periods, two decades apart, we found that disease severity consistently increased with N and decreased with CO2. However, the relationship between diversity and disease reversed from a dilution effect in 1999 (more severe disease in monocultures) to an amplification effect in 2019 (more severe disease in mixtures). The best explanation for this reversal centered on host density (i.e., aboveground biomass), which was initially highest in monoculture, but became highest in mixtures two decades later. Thus, the diversity-disease pattern reversed, but disease consistently increased with host biomass. These results highlight the consistency of N and CO2 as drivers of plant disease in the Anthropocene and emphasize the critical role of host biomass-despite potentially variable effects of diversity-for relationships between biodiversity and disease.


Biodiversity , Biomass , Carbon Dioxide , Nitrogen , Plant Diseases , Carbon Dioxide/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nitrogen/metabolism , Basidiomycota/genetics , Poaceae/microbiology
5.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710561

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
6.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698276

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Aegilops , Basidiomycota , Chromosome Mapping , Disease Resistance , Gene Expression Profiling , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Aegilops/genetics , Aegilops/microbiology , Plant Breeding , Transcriptome , Chromosomes, Plant/genetics , Puccinia/pathogenicity , Puccinia/physiology , Gene Expression Regulation, Plant
7.
Biomacromolecules ; 25(5): 2792-2802, 2024 May 13.
Article En | MEDLINE | ID: mdl-38602263

Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.


Dicarboxylic Acids , Fungal Proteins , Furans , Lipase , Polyesters , Polymerization , Lipase/chemistry , Lipase/metabolism , Furans/chemistry , Fungal Proteins/chemistry , Dicarboxylic Acids/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Isomerism , Basidiomycota
8.
Methods Mol Biol ; 2787: 209-223, 2024.
Article En | MEDLINE | ID: mdl-38656492

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Basidiomycota , Coffea , Gene Expression Regulation, Plant , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/genetics , Coffea/microbiology , Coffea/genetics , Basidiomycota/genetics , Basidiomycota/pathogenicity , Real-Time Polymerase Chain Reaction/methods , Gene Expression Profiling/methods , Mutation , Plant Leaves/microbiology , Plant Leaves/genetics , Host-Pathogen Interactions/genetics
9.
Sci Rep ; 14(1): 9298, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654032

Agaricales, Russulales and Boletales are dominant orders among the wild mushrooms in Basidiomycota. Boletaceae, one of the major functional elements in terrestrial ecosystem and mostly represented by ectomycorrhizal symbionts of trees in Indian Himalaya and adjoining hills, are extraordinarily diverse and represented by numerous genera and species which are unexplored or poorly known. Therefore, their hidden diversity is yet to be revealed. Extensive macrofungal exploration by the authors to different parts of Himalaya and surroundings, followed by through morphological studies and multigene molecular phylogeny lead to the discovery of five new species of wild mushrooms: Leccinellum bothii sp. nov., Phylloporus himalayanus sp. nov., Phylloporus smithii sp. nov., Porphyrellus uttarakhandae sp. nov., and Retiboletus pseudoater sp. nov. Present communication deals with morphological details coupled with illustrations and phylogenetic inferences. Besides, Leccinellum sinoaurantiacum and Xerocomus rugosellus are also reported for the first time from this country.


Agaricales , Phylogeny , India , Agaricales/genetics , Agaricales/classification , DNA, Fungal/genetics , Basidiomycota/genetics , Basidiomycota/classification
10.
BMC Ecol Evol ; 24(1): 54, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664655

BACKGROUND: Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS: Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS: Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.


Mycorrhizae , Pinus , Quercus , Mycorrhizae/physiology , Quercus/microbiology , Quercus/growth & development , Pinus/microbiology , Pinus/growth & development , Basidiomycota/physiology , Plant Roots/microbiology , Plant Roots/growth & development , Plant Growth Regulators/metabolism , Photosynthesis
11.
Int. microbiol ; 27(2): 525-534, Abr. 2024. mapas
Article En | IBECS | ID: ibc-232298

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.(AU)


Humans , Basidiomycota/genetics , Coffee/genetics , Coffee/microbiology , Plant Diseases/microbiology , Ethiopia
12.
BMC Plant Biol ; 24(1): 319, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38654176

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. Identification of new and elite Pst-resistance loci or genes has the potential to enhance overall resistance to this pathogen. Here, we conducted an integrated genome-wide association study (GWAS) and transcriptomic analysis to screen for loci associated with resistance to stripe rust in 335 accessions from Yunnan, including 311 landraces and 24 cultivars. Based on the environmental phenotype, we identified 113 protein kinases significantly associated with Pst resistance using mixed linear model (MLM) and generalized linear model (GLM) models. Transcriptomic analysis revealed that 52 of 113 protein kinases identified by GWAS were up and down regulated in response to Pst infection. Among these genes, a total of 15 receptor kinase genes were identified associated with Pst resistance. 11 candidate genes were newly discovered in Yunnan wheat germplasm. Our results revealed that resistance alleles to stripe rust were accumulated in Yunnan wheat germplasm, implying direct or indirect selection for improving stripe rust resistance in elite wheat breeding programs.


Disease Resistance , Genome-Wide Association Study , Plant Diseases , Puccinia , Triticum , Triticum/genetics , Triticum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , China , Puccinia/physiology , Gene Expression Profiling , Basidiomycota/physiology , Genes, Plant , Protein Kinases/genetics , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Pestic Biochem Physiol ; 200: 105806, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582572

Boscalid, a widely used SDHI fungicide, has been employed in plant disease control for over two decades. However, there is currently no available information regarding its antifungal activity against Sclerotium rolfsii and the potential risk of resistance development in this pathogen. In this study, we evaluated the sensitivity of 100 S. rolfsii strains collected from five different regions in China during 2018-2019 to boscalid using mycelial growth inhibition method and assessed the risk of resistance development. The EC50 values for boscalid ranged from 0.2994 µg/mL to 1.0766 µg/mL against the tested strains, with an average EC50 value of 0.7052 ± 0.1473 µg/mL. Notably, a single peak sensitivity baseline was curved, indicating the absence of any detected resistant strains. Furtherly, 10 randomly selected strains of S. rolfsii were subjected to chemical taming to evaluate its resistance risk to boscalid, resulting in the successful generation of six stable and inheritable resistant mutants. These mutants exhibited significantly reduced mycelial growth, sclerotia production, and virulence compared to their respective parental strains. Cross-resistance tests revealed a correlation between boscalid and flutolanil, benzovindiflupyr, pydiflumetofen, fluindapyr, and thifluzamide; however, no cross-resistance was observed between boscalid and azoxystrobin. Thus, we conclude that the development risk of resistance in S. rolfsii to boscalid is low. Boscalid can be used as an alternative fungicide for controlling peanut sclerotium blight when combined with other fungicides that have different mechanisms of action. Finally, the target genes SDHB, SDHC, and SDHD in S. rolfsii were initially identified, cloned and sequenced to elucidate the mechanism of S. rolfsii resistance to boscalid. Two mutation genotypes were found in the mutants: SDHD-D111H and SDHD-H121Y. The mutants carrying SDHD-H121Y exhibited moderate resistance, while the mutants with SDHD-D111H showed low resistance. These findings contribute to our comprehensive understanding of molecular mechanisms underlying plant pathogens resistance to SDHI fungicides.


Basidiomycota , Biphenyl Compounds , Fungicides, Industrial , Niacinamide/analogs & derivatives , Fungicides, Industrial/pharmacology , Succinate Dehydrogenase , Risk Assessment , Plant Diseases/microbiology
14.
BMC Plant Biol ; 24(1): 262, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38594614

BACKGROUND: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.


Basidiomycota , Mycoses , Disease Resistance/genetics , Oleic Acid , Plant Breeding , Chromosome Mapping , Basidiomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
15.
Planta ; 259(5): 121, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38615288

MAIN CONCLUSION: Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.


Arabidopsis , Basidiomycota , Cysts , Tylenchoidea , Animals , Endophytes , Carbon , Sugars
16.
Nanoscale ; 16(16): 8046-8059, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38563130

The biomedical application of nanotechnology in cancer treatment has demonstrated significant potential for improving treatment efficiencies and ameliorating adverse effects. However, the medical translation of nanotechnology-based nanomedicines faces challenges including hazardous environmental effects, difficulties in large-scale production, and possible excessive costs. In the present study, we extracted and purified natural exosome-like nanoparticles (ELNs) from Phellinus linteus. These nanoparticles (denoted as P-ELNs) had an average particle size of 154.1 nm, displayed a negative zeta potential of -31.3 mV, and maintained stability in the gastrointestinal tract. Furthermore, P-ELNs were found to contain a diverse array of functional components, including lipids and pharmacologically active small-molecule constituents. In vitro investigations suggested that they exhibited high internalization efficiency in liver tumor cells (Hepa 1-6) and exerted significant anti-proliferative, anti-migratory, and anti-invasive effects against Hepa 1-6 cells. Strikingly, the therapeutic outcomes of oral P-ELNs were confirmed in an animal model of metastatic hepatocellular carcinoma by amplifying reactive oxygen species (ROS) and rebalancing the gut microbiome. These findings demonstrate the potential of P-ELNs as a promising oral therapeutic platform for liver cancer treatment.


Carcinoma, Hepatocellular , Exosomes , Gastrointestinal Microbiome , Liver Neoplasms , Reactive Oxygen Species , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Reactive Oxygen Species/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Mice , Cell Line, Tumor , Exosomes/metabolism , Exosomes/chemistry , Gastrointestinal Microbiome/drug effects , Basidiomycota/chemistry , Basidiomycota/metabolism , Nanoparticles/chemistry , Phellinus/chemistry , Cell Proliferation/drug effects , Cell Movement/drug effects , Administration, Oral
18.
New Phytol ; 242(4): 1448-1475, 2024 May.
Article En | MEDLINE | ID: mdl-38581203

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Biological Evolution , Models, Biological , Mycorrhizae , Mycorrhizae/physiology , Mycorrhizae/genetics , Ecology , Symbiosis/genetics , Basidiomycota/physiology , Basidiomycota/genetics
19.
J Physiol Pharmacol ; 75(1)2024 Feb.
Article En | MEDLINE | ID: mdl-38583434

In this review we focused on the putative therapeutic effect of Hericium erinaceus extract in the treatment of pathologic conditions of the lower urinary tract in which intestinal inflammation may play a role. To this aim we reviewed the available evidence on pelvic cross-organ sensitization as a possible mechanism through which intestinal inflammation and dysbiosis may affect the lower urinary tract. Also, we reviewed the clinical and experimental evidence supporting the role of Hericium erinaceus extract as an anti-inflammatory agent highlighting the role of a number of putative mediators and mechanisms which might make this nutraceutical suitable for the management of 'difficult to treat' lower urinary tract disorders.


Basidiomycota , Hericium , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
20.
Sci Rep ; 14(1): 9408, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658671

Triticum militinae (2n = 4X = 28, AtAtGG), belonging to the secondary gene pool of wheat, is known to carry resistance to many diseases. Though some disease resistance genes were reported from T. timopheevii, the closest wild relative of T. militinae, there are no reports from T. militinae. Twenty-one T. militinae Derivatives (TMD lines) developed at the Division of Genetics, IARI, New Delhi, were evaluated for leaf and stripe rusts at seedling and adult plant stages. Eight TMD lines (6-4, 6-5, 11-6, 12-4, 12-8, 12-12, 13-7 and 13-9) showed seedling resistance to both leaf and stripe rusts while six TMD lines (7-5, 7-6, 11-5, 13-1, 13-3 and 13-4) showed seedling resistance to leaf rust but adult plant resistance to stripe rust and three TMD lines (9-1, 9-2 and 15) showed seedling resistance to leaf rust but susceptibility to stripe rust. Three TMD lines (2-7, 2-8 and 6-1) with adult plant resistance to leaf and stripe rusts were found to carry the known gene Lr34/Yr18. Ten TMD lines (7-5, 7-6, 9-1, 9-2, 11-5, 11-6, 12-12, 12-4, 12-8, and 15) with seedling resistance to leaf rust, showing absence of known genes Lr18 and Lr50 with linked markers requires further confirmation by the test of allelism studies. As not a single stripe rust resistance gene has been reported from T. militinae or its close relative T. timpopheevii, all the 8 TMD lines (6-4, 6-5, 11-6,12-4, 12-8, 12-12, 13-7 and 13-9) identified of carrying seedling resistance to stripe rust and 3 TMD lines (13-1, 13-3 and 13-4) identified of carrying adult plant resistance to stripe rust are expected to carry unknown genes. Also, all the TMD lines were found to be cytologically stable and thus can be used in inheritance and mapping studies.


Basidiomycota , Disease Resistance , Plant Diseases , Seedlings , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Seedlings/genetics , Seedlings/microbiology , Plant Leaves/microbiology , Plant Leaves/genetics , Genes, Plant
...